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SUMMARY

The purpose of this work is to introduce and validate a new staggered control volume method for the simulation
of 2D=axisymmetric incompressible ¯ows.

The present study introduces a numerical procedure for solving the Navier±Stokes equations using the
primitive variable formulation. The proposed method is an extension of the staggered grid methodology to
unstructured triangular meshes for a control volume approach which features ease of handling of irregularly
shaped domains. Two alternative elements are studied: transported scalars are stored either at the sides of an
element or at its vertices, while the pressure is always stored at the centre of an element. Two interpolation
functions were investigated for the integration of the momentum equations: a skewed mass-weighted upwind
function and a ¯ow-oriented exponential shape function. The momentum equations are solved over the covolume
of a side or of a vertex and the pressure±velocity coupling makes use of a localized linear reconstruction of the
discontinuous pressure ®eld surrounding an element in order to obtain the pressure gradient terms. The pressure
equation is obtained through a discretization of the continuity equation which uses the triangular element itself as
the control volume.

The method is applied to the simulation of the following test cases: backward-facing step ¯ow, ¯ow over a
two-dimensional obstacle and ¯ow in a pipe with sudden contraction of cross-sectional area. All numerical
investigations are compared with experimental data from the literature. A grid convergence and error analysis
study is also carried out for ¯ow in a driven cavity.

Results compared favourably with experimental data and so the new control volume scheme is deemed well
suited for the prediction of incompressible ¯ows in complex geometries. # 1997 John Wiley & Sons, Ltd.
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INTRODUCTION

The solution of the incompressible ¯ow equations presents a particular dif®culty which is related to

the fact that none of the equations can be directly identi®ed as governing the pressure. Using
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algorithms based upon arti®cial compressibility,1 or taking the limit of the compressible ¯ow

equations through preconditioning2 to regularize the eigenvalues, succeeds in providing a link

between the equations. These techniques are required to overcome the pressure oscillatory patterns

which result from the singular coef®cient matrices. Furthermore, if the arti®cial compressibility

approach can successfully predict unsteady ¯ows using implicit schemes, it is not time-accurate for

explicit time-marching procedures.3 Another approach commonly used to alleviate this dif®culty is a

staggered arrangement of the variables. Initially introduced by Harlow and Welch4 on Cartesian

grids, it has led to several variations depending on the location of the variables. These variations have

been extensively studied and compared with equivalent collocated schemes by Shih et al.5 The

staggered arrangement is equivalent to the unequal-order interpolation for pressure and velocity that

is used to achieve stability in the ®nite-element context as expressed by the Ladyzhenskaya±

Babuska±Brezzi condition.

The application of such schemes to irregular geometries of practical interest has led to the

necessity of extending these to curvilinear meshes. Contravariant and=or Cartesian velocity

components have been considered, while the pressure, as in the Cartesian case, may be considered to

be piecewise constant or piecewise linear, the ®rst alternative being the most popular. A curvilinear

co-ordinate system naturally generates a logical data stucture which preserves the basic arrangement

of the variables of structured Cartesian grids. However, not all arrangements extend readily to

curvilinear grids and many authors have found it convenient to revert to collocated schemes to avoid

the overhead resulting from the data structure of staggered schemes.6 In both cases, collocated and

staggered, the problem of devising an effective velocity±pressure coupling to yield a divergence-free

velocity ®eld remains.

Adequate and cost-effective treatment of complex geometries with additional requirements such as

adaptivity leads inevitably to the use of unstructured grids. Once this point has been reached, the

advantages of using quadrilaterals (in 2D) as the basic discretization elements are no longer obvious

and other polygonal shapes may be adopted. However, the basic issue of the velocity±pressure

coupling still remains for unstructured grids and several successful attempts have been reported7

using a collocated arrangement of the variables. These essentially rely on averaging techniques for

the coef®cients of the momentum equations at the cell interfaces, since the velocity is not available at

the faces because of the non-staggered arrangement. In fact, the evaluation and storage of both nodal

and interface velocities are then required. Hence the choice of collocation may be questioned. Along

these lines the covolume approach using a Voronoi±Delaunay mesh has been introduced by

Nicolaides8 as the ®rst attempt at a staggered discretization for unstructured grids.

The present investigation proposes a distinct avenue to extend the staggered grid methodology to

unstructured grids using a general triangulation as the primal mesh. In keeping with the staggered

grid approach, separate locations and control volumes are used for different variables. However,

unlike the covolume approach of Nicolaides, the same control volume is used for both velocity

components, because no orthogonality properties are imposed on the mesh. The main dif®culties

encountered in this approach are the handling of the pressure gradient and the discretization of the

convective term. The contribution of the pressure gradients to the momentum equations cannot be

obtained by integration of the pressure along the boundary of the velocity control volume but must be

determined via a reconstruction of the pressure ®eld dictated by the special con®guration of the

unstructured staggered grid. For this purpose, several reconstruction schemes have been investigated.

As for the discretization of the convective term, two interpolation functions were studied for the

integration of the scalar transport equation: the skewed mass-weighted upwind function proposed by

Schneider and Raw9 and the ¯ow-oriented exponential shape function ®rst introduced by Baliga and

Patankar.10 However, the ¯ow-oriented exponential shape function yielded unsatisfactory results for

swirling ¯ows and so only the skewed mass-weighted upwind function was retained.
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GOVERNING EQUATIONS

The equations governing the mass, momentum and transport of scalar quantities for unsteady two-

dimensional plane or axisymmetric incompressible ¯ows are written as

H � �r~v� � 0; �1�
@

@t
�r~v� � H � �r~v
 ~vÿ m�H~v� HT~v�� � H � �P ~G� ÿ ~S � ~0; �2�

@

@t
�rf� � H � �r~vfÿ GfHf� ÿ Sf � 0; �3�

where # is the tensor product operator, GÄ is the metric tensor and Gf is the diffusion coef®cient of

the dependent variable f. Integrating equations (1)±(3) over a given covolume Oc and using the

Gauss theorem yields the following integral forms of the governing equations.

Continuity equation �
@Oc

�r~v� � ~nr dl � 0: �4�

Momentum equations

The ®rst step is to transfer the vector form of the conservation of momentum into transport equations

for scalar variables (u, v). This is achieved by projecting equation (2) in the appropriate basis. Hence

multiplying equation (2) by a vector ~g (~g � ~ex or ~g � ~ey) yields

@

@t
�rvg� � H � �r~vvg ÿ mHvg� � �r~v
 ~vÿ mH~v� : H~g � H � �P~g� � �PI �H~g � 0; �5�

where vg � ~v � ~g and the symbol ` : ' represents the double contraction operator. Then integrating

equation (5) over the covolume Oc and using the Gauss theorem yields�
Oc

@

@t
�rvg� dV �

�
@Oc

�r~vvg ÿ mHvg� � ~n ds�
�
Oc

�r~v
 ~vÿ mH~v� : H~g dV

�
�
@Oc

P~g � ~n ds�
�
Oc

�P ~G� : H~g dV � 0: �6�

For the u-momentum equation, ~g in (6) is replaced by ~ex, and since the unit vector ~ex is constant,

H~ex � ~0; thus the equation reduces to�
Oc

@

@t
�ru�r dA�

�
@Oc

�r~vuÿ mHu� � ~nr dl �
�
@Oc

P~ex � ~nr dl � 0: �7�

Similarly, for the v-momentum equation, ~v is replaced by ~ey in Cartesian co-ordinates or ~er in

cylindrical co-ordinates. Since ~er is not a constant vector, it follows that H~er 6� ~0 and the following

integral equation is obtained:�
Oc

@

@t
�rv�r dA�

�
@Oc

�r~vvÿ mHv� � ~nr dl �
�
Oc

2m
v

r2
aaxir dA

�
�
@Oc

P~ey � ~nr dl ÿ
�
Oc

P

r
aaxir dA � 0: �8�
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Scalar f transport equation

�
Oc

@

@t
�rf�r dA�

�
@Oc

�r~vfÿ GfHf� � ~nr dl ÿ
�
Oc

Sfr dA � 0: �9�

For Cartesian co-ordinates, r� 1, aaxi� 0, dv� z dA and ds� z dl, whereas for cylindrical

co-ordinates, r� y, aaxi� 1, dv� 2pr dA and ds� 2prdl.

NUMERICAL METHOD

The extension of the classical staggered scheme for Cartesian grids to unstructured meshes yields

several possible con®gurations. Nicolaides8 has proposed a set of covolumes which possess an

orthogonality property derived from the Voronoi±Delaunay triangulation. In the present study the

centroids instead of the circumcentres of the triangles are used to de®ne the dual cells. This provides

¯exibility when adapting the grid. For this set of covolumes, two arrangements for the location of the

variables have been investigated. These result in a staggered unequal-order scheme. In the ®rst

arrangement, shown in Figure 1(a), the pressure is stored at the centroid of the element and the

velocities are stored at the midpoints of the sides (side-centred). The second variation (Figure 1(b))

has the velocities stored at the vertices of the element (vertex-centred) and the pressure at the

centroid.11 For the continuity equation, both con®gurations use the triangular element itself as the

control volume, whereas the covolume for the momentum (shaded area in Figure 1) is a polygon

centred on either a side of a vertex.

Discretization of transport equation

The conservation and transport of a scalar using these control volumes yield�
iaoci

@

@t
�rf�r dA�

�o

a

~J � ~nr dl �
�c

o

~J � ~nr dl ÿ
�

iaoci

Sfr dA

� �similar contributions from other elements associated with node i� � 0;

�10�

Figure 1. Control volume for transported scalar
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where

~J � r~vfÿ GfHf:

The discretization of the transient term using the forward Euler method yields�
iaoci

@

@t
�rf� dV � Ai�rAi

r
fn�1

i ÿ fn
i

Dt
; �11�

where Ai is the area of control volume iaoci and �rAi
is the radial co-ordinate of the centroid of area Ai

in cylindrical co-ordinates (i.e. r � �rAi
� 1 for Cartesian co-ordinates); fn�1

i and fn
i are the values of

fi at time levels n� 1 and n respectively and at variable location i.

The convection±diffusion ¯ux ~J may be expressed in the basis (~ex, ~ey) as

~J � Jx~ex � Jy~ey; �12�

where

Jx � rufÿ Gf
@f
@x
; Jy � rvfÿ Gf

@f
@y
: �13�

The integration of the convection±diffusion ¯ux in equation (10) can then be approximated as�o

a

~J � ~n ds �
�o

a

�Jxnx � Jyny� ds � ��Jx�p�nx�p � �Jy�p�ny�p�saorao; �14��c

o

~J � ~n ds �
�c

o

�Jxnx � Jyny� ds � ÿ��Jx�t�nx�t � �Jy�t�ny�t�socroc; �15�

where �nx�p, (ny)p and (nx)t, (ny)t are the components of the outward normal in the clockwise direction

of integration faces ao and oc respectively and r is the radius at the midpoint of a face (Figure 2). The

value of the dependent variable f appearing in the convection ¯ux is determined using an upwind

interpolation function as described further; other properties such as the convecting velocity and the

source term are assumed to vary linearly in the element.

Figure 2. Details of discretization and related nomenclature
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Finally, summing the contributions of the transient, convection±diffusion and source terms

together with the boundary condition for f, the ®nal form of the discretized transport equation can be

cast in the usual way12 as

aif
n�1
i �P anbf

n�1
nb � a0

i f
n
i � d

f
i ; �16�

where the summation is over the neighbours (nb) surrounding a computational point i and

a0
i � Ai�rAi

r=Dt as shown in (11). For the steady state formulation the contribution of the transient

term is omitted and the discretized transport equation reduces to

aifi �
P

anbfnb � d
f
i : �17�

One convenient characteristic of the side-centred scheme is that the number of neighbours is

always four, whereas in the case of the vertex-centred scheme the number of neighbours depends on

the mesh con®guration. This helps to reduce the matrix bandwidth especially when judicious grid

numbering is used.

Interpolation function

Both the side-centred and vertex-centred schemes originally made use of a hybrid interpolation

function for the integration of the convection±diffusion ¯ux.11 This hybrid function combines the

¯ow-oriented upwind function of Baliga and Patankar10 and a variation of the skewed mass- weighted

upwind function of Schneider and Raw.9

The ¯ow-oriented upwind function for a dependent variable f is the solution of the convection±

diffusion equation without a source term. It may be expressed as

f � AZ � BY � C; Z � Gf

rUav

exp
rUav

G
�X ÿ Xmax�

� �
ÿ 1

� �
; �18�

where Uav is the average velocity in an element and (X, Y) is a local co-ordinate system in which the

X-direction is aligned with the average velocity. A, B and C are coef®cients that can be determined

uniquely in terms of the local (X, Y) co-ordinates of nodes 1, 2 and 3 and the corresponding values

of f.

The skewed mass-weighted upwind function of Schneider and Raw9 for quadrilateral elements was

extended to triangular elements of arbitrary aspect ratios by Rida.11 Thus, by using the midpoint

approximation, the value of f at integration point p (Figure 2) is determined in the following way:

if _mp > 0, then

fp � f ft � �1ÿ f �f1; fp � min max
_mt

_mp

; 0

 !
; 1

" #
; �19�

if _mp < 0, then

fp � f fq � �1ÿ f �f2; fp � min max
_mq

_mp

; 0

 !
; 1

" #
: �20�

Where _mp � �rr�~v � ~n��psao is the mass ¯ow rate across integration face p, _mq and _mt are the mass ¯ow

rates across integration faces q and t respectively and sao is the length of face p. Combining the
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expressions of (19) and (20) together with similar expressions for integration faces q and t, the values

fp, fq and ft at integration points p, q and t can be expressed as

fp � zpft � Bpf1 � spf2 � wpfq;

fq � zqfp � Bqf2 � sqf3 � wqft;

ft � ztfq � Btf3 � stf1 � wtfp:

�21�

Simultaneous solutions for fp, fq and ft in terms of node values f1, f2 and f3 are determined

from (21), where zj, Bj, sj and wj ( j� p, q, t) are coef®cients to which the following values are

assigned:

_mj > 0: zj � fj; Bj � 1ÿ fj; sj � 0; wj � 0;

_mj < 0: zj � 0; Bj � 0; sj � 1ÿ fj; wj � fj:
�22�

The values of fp, fq and ft are then used in the calculation of the ¯uxes at the integration faces.

The computation of the convective ¯ux in a particular element was based on the local Peclet

number of that element: when Pe4Pemax, the exponential function was used; when Pe>Pemax, the

skewed mass-weighted upwind function was used. The Peclet number of an element is de®ned as

Pe � rUav

G
�Xmax ÿ Xi�; �23�

where Xi is the X-co-ordinate at variable locations. The values Pemax� 10 for laminar ¯ow and

Pemax� 2 for turbulent ¯ow were found to give a good transition. The results obtained with the hybrid

interpolation function were only marginally different from those obtained solely with the skewed

mass-weighted upwind function.11 Furthermore, for turbulent swirling ¯ows11 and turbulent reacting

¯ows,13 only the mass-weighted upwind scheme proved satisfactory. Accordingly, the skewed mass-

weighted upwind function modi®ed for triangular elements is the only one used in the present study.

The calculation of the diffusion terms is based on a linear interpolation function determined from

the values of f at points 1, 2 and 3 and their corresponding (x, y) locations (Figure 2).

Pressure±velocity coupling

In the process of discretizing the governing equations, the pressure±velocity coupling step must be

undertaken when, in the overall solution procedure, the momentum equations are segregated from the

continuity equation, which is the case in the present study.

The derivations of both the side-centred and vertex-centred schemes are essentially identical,

except for details pertaining to the coupling of pressure and velocity since the momentum covolumes

are different. Although both schemes yield results with comparable accuracy, it was found that the

side-centred scheme converges more rapidly and that Neumann-type boundary conditions on solid

walls are more easily implemented. The pressure-velocity coupling will therefore only be described

for the side-centred scheme, as all computations presented in this paper were carried out solely with

this scheme.

The pressure-velocity coupling relation is established by combining the momentum and continuity

equations. Figure 3 shows the covolume used for the momentum equations in the calculation of point

i, its neighbouring points k� 1, 2, 3, 4 and the integration points j� 1, 2, 3, 4. L and R represent the

centroids of each triangular element having a common side i in this covolume. As the pressure is
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considered piecewise constant by element, the pressure integrals in the momentum equations (7) and

(8) may be discretized as�
@Oc

P~ex � ~nr dl �P4
j�1

Pjrjsj�~nj � ~ex� � DPirisiNix; �24��
@Oc

P~ey � ~nr dl ÿ
�
Oc

Paaxi dA �P4
j�1

Pjrjsj�~nj � ~ey� ÿ �PRAR � PLAL�aaxi � DPirisiNiy; �25�

where ~Nt is a normal directed from triangle L towards triangle R, as shown in Figure 3. Discretizing

and casting in the form of (16), the discretized momentum equations are written as

au
i un�1

i � P4
k�1

au
kun�1

k � a0
i un

i ÿ DPirisiNix � du
i ;

av
i v

n�1
i � P4

k�1

av
kvn�1

k � a0
i vn

i ÿ DPirisiNiy � dv
i :

�26�

The control volume for the continuity equation is the triangular element itself shown by the full

lines in Figure 4. Using the midpoint approximation for the velocity in (4) yields

P3
i�1

rri~v
n�1
i � ~nisi � 0; �27�

where si is the length of side i and ~ni represents the outward normal of each integration side i of

element P0.

An algebraic equation for pressure is then derived by substituting the discrete momentum relation

(26) into the discrete continuity relation (27). Using this procedure, the pressure equation is derived

from the three pressure differences DPi (i� 1, 2, 3) that drive the three normal velocities of an

element. In fact, these pressure differences appear in the continuity equation when the components of

the velocity vector ~vn�1
i in (27) are replaced by the components un�1

i and vn�1
i of the momentum

equation (26). The pressure equation takes the form

c0P0 �
P3
i�1

ciPi � x; �28�

Figure 3. Covolume used for deriving pressure±velocity closure
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with

ci � rr2
i s2

i

n2
ix

au
i

� n2
iy

av
i

 !
; c0 � ÿ

P3
i�1

ci; x �P3
i�1

rrisi�~v�i � ~ni�;

where the components of vector ~v�i are de®ned as

u�i �
ÿP4

k�1

au
kun

k � a0
i un

i � du
i

au
i

; v�i �
ÿP4

k�1

av
kvn

k � a0
i vn

i � dv
i

av
i

: �29�

Once the pressure±velocity coupling is established and the pressure ®eld is obtained, one must

solve the discretized momentum equations

au
i un�1

i � P4
k�1

au
kun�1

k � a0
i un

i ÿ
@P

@x

� �
i

riAi � du
i ;

av
i v

n�1
i � P4

k�1

av
kvn�1

k � a0
i vn

i ÿ
@P

@y

� �
i

riAi � dv
i :

�30�

It is noted that in (30) the discretization of the pressure gradient is not yet determined. One can

approximate the pressure gradient components by projecting the pressure difference DP in directions

x and y as done in (26). However, this approach shows some limitations that will now be discussed.

Pressure reconstruction: different approaches

Method 1

In order to solve the momentum equations for u and v, one must ®rst determine the pressure

gradients in directions x and y. The most straightforward way to do this is to simply consider these as

being equal to the pressure terms in (26) (Method 1):

�@P=@x�iAiri � DPiNixsiri; �31�
�@P=@y�iAiri � DPiNiysiri: �32�

Strictly speaking, this is a pressure difference, not a gradient. In fact, it may be considered as the

projection of the pressure gradient in the direction normal to the side. This is inadequate, because the

computation of a gradient requires at least three points. For quadrilateral staggered grids the

Figure 4. Node cluster involved in discretized pressure equation
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con®guration of the variables satis®es this condition (Figure 5(a)). Unfortunately, this is not the case

for triangular unstructured staggered grids, where both velocity components use the same control

volume (Figure 5(b)) and are thus connected to only two pressure points, PR and PL. It follows that

the pressure difference DPi�PR7PL in (31) and (32) cannot correct both u and v, but only the

velocity component normal to a side. This shortcoming stems from the fact that the velocity

components are collocated at the sides. This problem will not arise if the velocity components are

collocated at the vertices, but then the checkerboard pressure problem appears.11

To alleviate the dif®culty encountered with Method 1, one may reconstruct the pressure ®eld

surrounding an element using as many of the neighbouring pressure points as are necessary to

determine the correct pressure gradient. Three alternatives are considered.

At this point a question may arise concerning the use of the pressure difference DP in the pressure±

velocity coupling step (26) even though this approach does not adequately approximate the pressure

gradient in (30). The reason for using DP in this manner arises from the fact that equation (26) is

derived using DP and then coupled to the discretized continuity equation (27) to replace the normal

velocity to the side. Hence, as far as the normal velocity is concerned, the pressure difference DP is

the appropriate approximation of the pressure gradient to be used. However, for the momentum

equations (30), both u and v must be provided with the correct pressure gradient and thus resorting to

a pressure reconstruction may be justi®ed.

This process may in some way be compared to the predictor±corrector method where DP is ®rst

used to get the correct pressure ®eld and then a pressure reconstruction follows to give the correct

velocity components.

To pursue this point further, the present scheme was applied using a coupled version where all the

equations are gathered in the same linearized system (u, v, p). The pressure then appears only in the

momentum equations and only one pressure gradient discretization is possible. The results show that

the approximation with DP yields acceptable results as long as the mesh is not very stretched and the

¯ow is not subject to large recirculating regions. Moreover, with the exception of the DP

approximation, all the pressure reconstructions methods fail to yield adequate predictions. This fact

con®rms that for the SIMPLER-type algorithm the use of DP in the pressure±velocity coupling step is

necessary in order to drive the solution to the right results.

Method 2

The most obvious alternative to Method 1 is to assume that the local pressure ®eld varies linearly

over macroelement P1P2P3 described by the chain lines in Figure 4. The partial derivatives @P=@x and

Figure 5. Unstructured and structured staggered grid con®gurations
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@P=@y needed for the momentum equations are computed from a linear interpolation function

uniquely determined from the values of the pressure at points P1, P2 and P3 and their corresponding

locations.

Method 3

Unfortunately, Method 2 does not take into consideration the pressure P0 of the element in

question. This value may nevertheless be included in the calculation by computing three pressure

gradients for each element via three distinct linear interpolations that will involve P0 and two other

pressure points among P1, P2 and P3. For example, the pressure gradient around vertex 1 is computed

using P0, P1 and P2, so the three linear pressure ®elds covering the element will have P0 as an

intersection point (Figure 6). Hence each velocity control volume intersects with two pressure

gradient ®elds within an element.

Method 4

Although both of the last two alternatives yield acceptable results for the ¯ow ®eld, neither allows

the local mass conservation criteria to be satis®ed to machine accuracy as is the case for Method 1.

This behaviour is due to the slight inconsistency between the pressure differential DPi used in the

pressure±velocity coupling equation (28) and the pressure gradients @P=@x and @P=@y obtained by

either reconstruction Method 2 or Method 3. In order for mass to be strictly conserved, the local

pressure ®eld reconstruction must ensure that the normal pressure gradient component DPisiri at side i

is the same for both equation (28) and the pressure reconstruction, i.e.

DPisiri �
@P

@x

� �
Nix �

@P

@y

� �
Niy

� �
Ai�rAi

: �33�

Figure 6. Method 3: pressure reconstruction involving P0
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This may be achieved by deriving a linear interpolation for the pressure that is subject to the

constraint described in (33). The following set of equations is then obtained (this example is for side 1

and similar equations are obtained for the other sides (Figure 4)):

a1N1x � b1N1y � DP1r1s1=�A1�rA1
�;

a1x2 � b1y2 � g1 � P2; �34�
a1x3 � b1y3 � g1 � P3;

where a1, b1 and g1 are the coef®cients of the linear interpolation around side 1.

This third alternative uses three distinct linear variations of the pressure ®eld within an element and

provides a link between the pressure equation (28) and the pressure distribution by ensuring, through

the reconstruction, that the normal pressure gradient is continuous across the side.

Finally, for a given pressure reconstruction method the following discretized momentum equations

are solved to obtain the velocity ®eld:

au
i un�1

i � P4
k�1

au
kun�1

k � a0
i un

i ÿ airiAi � du
i ;

av
i v

n�1
i � P4

k�1

av
kvn�1

k � a0
i vn

i ÿ biriAi � dv
i ;

�35�

where ai and bi are either constant by element (Method 2), a combination of the vertex-based pressure

gradients (Method 3) or constant by velocity control volume within an element (Method 4).

Boundary conditions

For the side-centred scheme the boundary control volume has two internal faces and a boundary

side (Figure 7), which reduces to two the number of neighbours of calculation point i. The discretized

equation of a dependent variable f can be then deduced from (16) by adding the contribution of

boundary side i as follows:

aif
n�1
i � P2

k�1

akf
n�1
k � _mif

n�1
i ÿ qi � a0

i f
n
i � d

f
i ; �36�

where _mt is the mass ¯ow and qi is the diffusion ¯ux leaving the domain through side i. For a

Dirichlet-type boundary condition, equation (36) can be replaced by fi�fspeci®ed or, if needed,

Figure 7. Boundary computational point
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solved with qi as unknown. Otherwise, for Neumann-type boundary conditions, fi is obtained by

solving equation (36).

SOLUTION OF DISCRETIZED EQUATIONS

The solution procedure is based on a SIMPLER-type algorithm in which a pressure correction P0 is

added to the velocity ®eld to satisfy the continuity equation.12 The pressure correction should be

determined using the same pressure ®eld reconstruction technique as that used to determine the

pressure gradient terms @P=@x and @P=@y. However, reconstructing P0 cannot guarantee that the

corrected velocity ®eld will satisfy the continuity equation. In fact, for the SIMPLER algorithm, in

order for the corrected velocity ®eld to satisfy continuity, P0 must satisfy the equation

c0P00 �
P3
i�1

ciP
0
i � x0; �37�

with

x0 �P3
i�1

rrisi�~vi � ~ni�:

Therefore, since satisfying continuity to machine accuracy places a constraint on P0, any

reconstruction of this pressure correction will result in a certain numerical error. Moreover, as pointed

out by Prakash and Patankar,14 the use of the pressure correction to correct the velocities can be

viewed as an arti®ce to accelerate the convergence. In fact, at convergence the pressure correction is

zero. Therefore the pressure correction step has been omitted from the algorithm. The overall

procedure can be outlined as follows.

1. Estimate values for all the dependent variables involved.

2. Compute the pseudovelocities u* and v* (equation (29)).

3. Solve the pressure equation (28) implicitly over the entire ®eld.

4. Compute the new pressure gradient ®eld using one of the pressure reconstruction methods.

5. Solve the momentum equations (35) implicitly.

6. Solve any additional transport equation as the case may be (equation (16)).

7. Check for convergence of all the variables and return to step 2 after updating the variables

unless the convergence criterion has been reached.

Since this algorithm will not necessarily allow continuity to be satis®ed to machine accuracy, one

may consider another velocity ®eld (uÄ , ~v), called the convecting velocity ®eld. This is introduced in

the spirit of the equal-order methods of Prakash and Patankar14 as follows:

~ui � ui ÿ DP0isiriNix=a
u
i ; ~vi � vi ÿ DP0isiriNiy=a

v
i : �38�

Since using the pressure correction P0 in this manner does not involve a reconstruction technique,

the so-called convecting velocity ®eld will then satisfy the continuity equation as pointed out earlier.

Hence, in every convection±diffusion equation, uÄ and ~v are the components used as convecting

velocities, whereas u and v remain the convected velocity components. The following steps are then

added to the overall procedure.

5(a). Solve the pressure correction equation (37) implicitly.

5(b). Compute the convecting velocity ®eld (equation (38)).
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NUMERICAL RESULTS

The proposed scheme was validated by comparison with analytical or experimental data from the

literature for the following test cases: (i) cavity ¯ow driven by shear and body forces; (ii) backward-

facing step ¯ow; (iii) ¯ow over a two-dimensional obstacle; (iv) ¯ow in a pipe with sudden

contraction of cross-sectional area.

In this study, only steady state solutions are presented. Computations were carried out on an IBM

RISC 6000 model 340. The convergence of a dependent variable f is considered to be reached when

both the correction Cf and the residual Resf tend to zero:

Cf � max
N

i�1
jfn�1

i ÿ fn
i j; �39�

Resf �
PN
i�1

aif
n�1
i � P4

k�1

akf
n�1
k ÿ a0

i f
n
i ÿ d

f
i

� �� �1=2

; �40�

where N is the number of computational points in the domain.

Cavity ¯ow driven by shear and body forces

In order to assess the accuracy of the method and to establish the order of the scheme, a grid

convergence study is carried out on a benchmark problem with a known analytical solution. The test

is a two-dimensional cavity ¯ow driven by shear and body forces (Figure 8). For this test the

governing equations for incompressible ¯ows are given by

@u

@x
� @v
@y
� 0; �41�

@

@x
�ruu� � @

@y
�ruv� ÿ @

@x
m
@u

@x

� �
ÿ @

@y
m
@u

@y

� �
� @P
@x
� 0; �42�

@

@x
�ruv� � @

@y
�rvv� ÿ @

@x
m
@v

@x

� �
ÿ @

@y
m
@v

@y

� �
� @P
@y
ÿ B�x; y; m� � 0; �43�

where B(x, y, m) is a forcing term prescribed as5

B�x; y; m� � ÿ8m�24F�x� � 2f 0�x�g00�y� � f 000�x�g�y�� ÿ 64�F2�x�G1��y� ÿ g�y�g0�y�F1�x�� �44�
and the functions appearing in (44) are de®ned as

f �x� � x4 ÿ 2x3 � x2; g�y� � y4 ÿ y2;

F�x� �
�x

0

f �z� dz; F1�x� � f �x� f 00�x� ÿ � f 0�x��2; �45�

F2�x� � 0�5� f �x��2; G1�y� � g�y�g000�y� ÿ g0�y�g00�y�:
The boundary conditions are of the Dirichlet type for both u and v, which makes the solution

unique for the velocity ®eld. Furthermore, the singularity usually encountered at the top corners in a

regular driven cavity ¯ow is eliminated by setting the top boundary velocity to5

u�x; 1� � 16�x4 ÿ 2x3 � x2�: �46�
The exact solution to this problem is determined as

u�x; y� � 8f �x�g0�y�; v�x; y� � ÿ8f 0�x�g�y�; �47�
P�x; y; m� � 8m�F�x�g000�y� � f 0�x�g0�y�� � 64F2�x��g�y�g00�y� ÿ �g0�y��2�; �48�

where the pressure depends solely on the Reynolds number.
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In order to establish the order of the scheme, seven test cases are carried out at Re� 10 where the

only parameter allowed to vary is the grid resolution over the domain O. The computations are

deemed converged when the residual and the corrections of all the dependent variables are less than

10±10. The measure of accuracy is based on the following numerical errors over domain O:

Eu � kuÿ uexactk1;O; Ev � kvÿ vexactk1;O; E ~P � k ~P ÿ ~Pexactk0;O; �49�
where the above L2 and H1 norms are de®ned over a domain O for a dependent variable f by

kfk0;O �
�
O
jfj2 dO

� �1=2

; kfk1;O � kfk0;O �
�
O

@f
@x

���� ����2� @f@y
���� ����2

 !
dO

" #1=2

�50�

and the normalized pressure PÄ is de®ned by

~P � P ÿ Pref ; Pref �
�
O P dO�
O dO

: �51�

For this problem the pressure reconstruction methods were ®rst tested without using steps 5(a) and

5(b) in the overall solution procedure. The order of the scheme can be determined by computing the

slope of the curves representing the evolution of the true error for the velocity and the pressure ®elds

(Figure 9). In all cases this value is found to be one. Nevertheless, the most appropriate norm to be

considered is the L2 norm for both ®elds. In fact, for this scheme, neither the velocity nor the pressure

is continuous over the domain. Therefore any reference to the H1 norm to determine the order of the

scheme is erroneous.

Methods 1, 2 and 3 seem to behave adequately in spite of their previously discussed drawbacks.

However, Method 4, which was introduced in order to satisfy local mass conservation to machine

accuracy, strongly affects the pressure ®eld (Figure 9). Moreover, for all the methods the pressure

difference Pmax7Pmin was computed for the ®nest grid (70670) and compared with its exact value:

one can clearly notice that Method 4 yields an incorrect pressure ®eld and should be de®nitively

discarded (Table I).

The problem of mass conservation can be resolved by modifying the algorithm and introducing a

so-called convecting velocity (uÄ , ~v) which takes into account the mass conservation through a

pressure correction P0. As shown in steps 5(a) and 5(b), this modi®cation to Method 2 yields the best

Figure 8. Global features of ¯ow pattern for driven cavity
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combination (Method 5) and allows both mass conservation and pressure gradient approximation

criteria to be satis®ed (Figure 9). All the following validations were carried out using this last

combination.

Backward-facing step ¯ow

The problem is summarized in Figure 10. A parabolic velocity pro®le deduced from the

experimental measurements of Armaly et al.15 is imposed at the inlet. The computational domain is

limited to the region downstream of the expansion. The Reynolds number, based on twice the inlet

height and on the average inlet velocity, is equal to 389.

The computational grid contains 3436 sides and 2240 elements. It is ®ne in the inlet region and

stretched near the outlet. Convergence was reached in 1197 s. Predictions for the velocity component

u are compared with the experimental data of Reference 15 at the four axial stations x=S� 2�55, 4�18,

7�76 and 13�57.

The present scheme provides very good agreement between numerical computations and

experimental data, even at station x=S� 7�76 located near the reattachment point (Figure 11). This

agreement is con®rmed by the computed recirculation length (x=S� 7�65), which is very close to the

experimental value (x=S� 7�81).

Figure 9. Evolution of true error with cell dimension h

Table I. Maximum pressure difference in driven cavity

Method 1 2 3 4 5 Exact

Pmax7Pmin 0�7839 0�7871 0�7855 0�5406 0�7872 0�8249
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Laminar ¯ow over a two-dimensional obstacle

The experimental con®guration is presented in Figure 12. The velocity pro®le imposed at the inlet

is deduced from the experimental investigations of Carvalho et al.16 The Reynolds number (based on

the obstacle height and on the average inlet velocity) is equal to 145. A mesh containing 5766 sides

and 3760 elements is used for this computation. The grid is ®ne around the obstacle and stretched

near the outlet. Convergence was reached in 4796 s, which gives a clue about the severity of the test.

Figure 13 shows the radial distribution of the velocity component u at eight stations downstream of

the obstacle: x=S� 0, 2�4, 3�4, 4�4, 6, 11, 18 and 24.

The numerical results are in good agreement with the experimental data. Despite the dif®culty of

the test, a good recirculation length has been computed (x=S� 9�23) which is close to the

experimental reattachment point obtained by Carvalho et al.16 (9< x=S< 11). A slight difference can

be noticed between computed and measured values of the velocities at station x=S� 11, which is

quite understandable since this station is located at the end of the vortex region.

Laminar ¯ow in a pipe with sudden contraction

This test was experimentally investigated by Durst and Loy.17 It was selected in order to validate

the scheme for axisymmetric ¯ow simulations. The geometric and ¯ow characteristics are given in

Figure 11. Comparison of measured15 and predicted u-velocity at various locations of backward-facing step ¯ow

Figure 10. Global features of backward-facing step ¯ow
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Figure 14. The inlet parabolic pro®le is deduced from the experimental measurements. The Reynolds

number based on the average inlet velocity and on the inlet diameter is equal to 196. The axial

velocity pro®les both upstream and downstream of the contraction were used for comparison with

experimental data at x=D� 7 1�047, ÿ0�209, ÿ0�039, 0�052, 0�105 and 1�000.

The computational domain is only half the geometric domain because of the axisymmetric nature

of the problem. The grid used is unstructured and contains 2537 sides and 1655 elements (Figure 15).

The programme converged in 184 s.

Figure 12. Global features of ¯ow over two-dimensional obstacle

Figure 13. Comparison of measured16 and predicted u-velocity at various locations for ¯ow over two-dimensional obstacle
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Figure 15. Mesh for pipe with sudden contraction

Figure 16. Comparison of measured17 and predicted axial velocity at various locations for ¯ow in pipe with sudden coantraction

Figure 14. Global features of sudden contraction ¯ow in pipe
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The agreeement, as shown in Figure 16, is very good even in the area of the contraction,

con®rming both the accuracy of the scheme and its ability to adequately simulate laminar ¯ows.

CONCLUDING REMARKS

An unequal-order staggered control volume method for the prediction of two-dimensional

incompressible ¯uid ¯ow has been presented. The idea of using unstructured staggered grids ®rst

emerged with Nicolaides' approach to discretizing the so-called div±curl equations and the Navier±

Stokes equations.18 It consists of using pairs of control volumes that are orthogonally related via a

Voronoi±Delaunay triangulation. One set of covolumes holds the circulation of the velocity ®eld and

the other is associated with the mass ¯ux. The Navier±Stokes equations are therefore expressed in

terms of divergence and curl.

However, in order to avoid the stretching limitations imposed by the Voronoi±Delaunay meshes,

the orthogonality property between the two sets of covolumes was eliminated. Furthermore, the two

staggered covolumes used in this study were associated with the velocity and the pressure instead of

the divergence and the curl. The scheme is not subject to boundary condition problems like the equal-

order formulation or the vorticity±streamfunction formulation. It also uses a continuity-satisfying

®eld (uÄ , ~v) as the convecting velocity ®eld in all the convection±diffusion equations (including u and

v) to strictly ensure mass conservation. Nevertheless, a problem arises concerning the discretization

of the pressure gradient when it comes to solving the momentum equations. To alleviate this

dif®culty, four reconstruction methods of the pressure ®eld are tested, but only one of these (Method

2) yields satisfactory results when combined with the convecting velocity.

The numerical predictions obtained for two-dimensional laminar planar and axisymmetric ¯ows

show very good agreement with experimental data. This study also represents a prelude to the

numerical solution of turbulent cold ¯ows and turbulent reacting ¯ows using the staggered grid

methodology and a large step towards the solution of three-dimensional problems on unstructured

tetrahedral meshes.
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